Sketch the graph of \(f(x) = x^3 - 9x^2 + 15x - 135 \)

Factor:

<table>
<thead>
<tr>
<th>METHOD 1: Factoring with Factor Theorem</th>
<th>METHOD 2: Factoring by grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(9) = 0; (x - 9) \text{is a factor by factor theorem})</td>
<td>(f(x) = x^3 - 9x^2 + 15x - 135)</td>
</tr>
</tbody>
</table>
| \[\begin{array}{cccc}
1 & -9 & 15 & -135 \\
9 & 9 & 0 & 135 \\
\end{array} \] | \(= x^2(x - 9) + 15(x - 9) \) |
| \(f(x) = (x - 9)(x^2 + 15) \) | \(= (x - 9)(x^2 + 15) \) |
| \(x - \text{int at 9; the rest is unfactorable.} \) | \(x - \text{int at 9; the rest is unfactorable.} \) |

\(y - \text{int: } f(0) = -135 \)

\(f(x) \text{is a polynomial, therefore, no asymptotes} \)

First Derivative Test:
\(f(x) \text{is differentiable and continuous:} \)
\(f'(x) = 3x^2 - 18x + 15 \)
\(0 = 3(x^2 - 6x + 5) \)
\(= 3(x - 5)(x - 1) \)
\(\text{local max/min } x = 5, x = 1 \)

Second Derivative Test:
\(f''(x) = 6x - 18 \)
\(0 = 6x - 18 \)
\(18 = 6x \)
\(3 = x \)

<table>
<thead>
<tr>
<th></th>
<th>(x < 1)</th>
<th>(1 < x < 3)</th>
<th>(3 < x < 5)</th>
<th>(5 < x < 9)</th>
<th>(9 < x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(f''(x))</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

| | negative, increasing, concave down | negative, decreasing, concave down | negative, decreasing, concave up | negative, increasing, concave up | positive, increasing, concave up |

\(x = 1 \text{ is a local max} \)
\((1, -128) \)

\(x = 3 \text{ is an inflection point} \)
\((3, -144) \)

\(x = 5 \text{ is a local min} \)
\((5, -160) \)

\(x = 9 \text{ is an int} \)
\((9, 0) \)
sketch the graph of \(f(x) = \frac{x^2 - 3x + 6}{x - 1} \).

\(f(x) \) has no \(x - \text{int} \)

(quad formula on numerator)

\(y - \text{int} \):
\(f(0) = -6 \)

no holes

\(VA: \)
\(x = 1 \)

HA/OA: (we know it will have an OA because of the Advanced Functions rule)

<table>
<thead>
<tr>
<th>Left:</th>
<th>Right:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\lim_{x \to \infty} f(x)]</td>
<td>[\lim_{x \to \infty} f(x)]</td>
</tr>
<tr>
<td>[= \lim_{x \to \infty} \frac{x^2 - 3x + 6}{x - 1}]</td>
<td>[= \lim_{x \to \infty} \frac{x^2 - 3x + 6}{x - 1}]</td>
</tr>
<tr>
<td>[= \lim_{x \to \infty} \left(x - 2 + \frac{4}{x - 1} \right)]</td>
<td>[= \lim_{x \to \infty} \left(x - 2 + \frac{4}{x - 1} \right)]</td>
</tr>
<tr>
<td>[= \lim_{x \to \infty} (x - 2) + \lim_{x \to \infty} \frac{4}{x - 1}]</td>
<td>[= \lim_{x \to \infty} (x - 2) + \lim_{x \to \infty} \frac{4}{x - 1}]</td>
</tr>
<tr>
<td>[= \lim_{x \to \infty} (x - 2) + 0^-]</td>
<td>[= \lim_{x \to \infty} (x - 2) + 0^-]</td>
</tr>
<tr>
<td>[= DNE(-\infty)]</td>
<td>[= DNE(\infty)]</td>
</tr>
</tbody>
</table>

Therefore, the OA has an equation of \(y = x - 2 \) and we approach it from below. Therefore, the OA has an equation of \(y = x - 2 \) and we approach it from above.

\[
f'(x) = \frac{(2x - 3)(x - 1) - (x^2 - 3x + 6)(1)}{(x - 1)^2}
\]

\[
= \frac{(2x^2 - 5x + 3) - x^2 + 3x - 6}{(x - 1)^2}
\]

\[
= \frac{x^2 - 2x - 3}{(x - 1)^2}
\]

\[
= \frac{(x - 3)(x + 1)}{(x - 1)^2}
\]

\(f'(x) = 0 \) when \(x = 3, -1 \)

\(f'(x) \) DNE when \(x = 1 \)
\[f''(x) = \frac{(2x - 2)(x - 1)^2 - (x^2 - 2x - 3)(2(x - 1))}{(x - 1)^4} \]
\[= \frac{(x - 1)((2x - 2)(x - 1) - 2(x^2 - 2x - 3))}{(x - 1)^4} \]
\[= \frac{2x^2 - 2x - 2x + 2 - 2x^2 + 4x + 6}{(x - 1)^3} \]
\[= \frac{8}{(x - 1)^3} \]

\[f''(x) = 0 \text{ never; undefined when } x = 1 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(x < -1)</th>
<th>(-1 < x < 1)</th>
<th>(1 < x < 3)</th>
<th>(3 < x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>(f''(x))</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(f'''(x))</td>
<td>negative, increasing, concave down</td>
<td>negative, decreasing, concave down</td>
<td>positive, decreasing, concave down</td>
<td>positive, increasing, concave down</td>
</tr>
</tbody>
</table>

- \(x = -1 \) is a local max \((-1, -5)\)
- \(x = 1 \) is a VA
- \(x = 3 \) is a local min \((3, 3)\)