MHF4U Review Practice Questions

1. Draw the reciprocal function on the same axes below:

- label graphs and axes
- max/min correspondance
- y intercept at 0.25
- points of intersection at ±1
2. Sketch the function \(f(x) = \frac{1}{(x+4)(x-3)(x+2)} \).

Sketch the function \(y = (x + 4)(x - 3)(x + 2) \) first to avoid having to check asymptote behaviour (you can tell from the graph if it's positive or negative) ** y-axis not to scale on the graph below:

- label graphs and axes
- max/min correspondence
- y intercept at \(\frac{1}{24} \)
- points of intersection at ±1

3. Complete the table:

<table>
<thead>
<tr>
<th></th>
<th>(f(x))</th>
<th>(\frac{1}{f(x)})</th>
<th>(x = -4 \text{ and } x = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x) - intercepts</td>
<td>-4 and 6</td>
<td>VAs</td>
<td></td>
</tr>
<tr>
<td>(y) - intercept</td>
<td>-24</td>
<td>y - intercept</td>
<td>(\frac{1}{24})</td>
</tr>
<tr>
<td>positive intervals</td>
<td>((-\infty, -4), (6, \infty))</td>
<td>positive intervals</td>
<td>((-\infty, -4), (6, \infty))</td>
</tr>
<tr>
<td>negative intervals</td>
<td>((-4, 6))</td>
<td>negative intervals</td>
<td>((-4, 6))</td>
</tr>
<tr>
<td>increasing intervals</td>
<td>((1, \infty))</td>
<td>decreasing intervals</td>
<td>((1, \infty))</td>
</tr>
<tr>
<td>decreasing intervals</td>
<td>((-\infty, 1))</td>
<td>increasing intervals</td>
<td>((-\infty, 1))</td>
</tr>
<tr>
<td>local minimum</td>
<td>when (x = 1)</td>
<td>local maximum</td>
<td>when (x = 1)</td>
</tr>
</tbody>
</table>
Graph the function

\[f(x) = \frac{12x - 36}{4x + 4} \]

- \(x - \text{int}: 3\)
- \(y - \text{int}: -9\)
- \(VA: x = -1\)
- \(HA: y = \frac{12}{4} = 3\)
MHF4U Review Practice Questions

5. Graph the function
\[f(x) = \frac{(x + 1)(x + 2)(x + 3)}{(x - 1)(x + 2)(x + 5)} \]

- x-intercept: \(x = -1, -3 \)
- y-intercept: \(y = -\frac{3}{5} \)
- hole: at \(x = -2 \)

Vertical Asymptotes (VA): \(x = 1, x = -5 \)

<table>
<thead>
<tr>
<th>Asymptote</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 1)</td>
<td>(f(0.9) = -12.6 \ (down))</td>
<td>(f(1.1) = 14.1 \ (up))</td>
</tr>
<tr>
<td>(x = -5)</td>
<td>(f(-5.1) = 14.1 \ (up))</td>
<td>(f(-4.9) = -12.6 \ (down))</td>
</tr>
</tbody>
</table>

Horizontal Asymptote (HA): \(y = \frac{1}{1} = 1 \)

- behaviour:
 - \(f(-100) = 1.0008 \ (above) \)
 - \(f(100) = 1.0008 \ (above) \)
MHF4U Review Practice Questions

6. Graph the function
\[f(x) = \frac{(x + 2)(x - 1)}{(x + 1)} \]

- **x - int:** -2, 1
- **y - int:** -2

VA: \(x = -1 \)

** behaviour:**

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = -1)</td>
<td>(f(-1.1) = 18.9 \ (above))</td>
<td>(f(-0.9) = -20.9 \ (below))</td>
</tr>
</tbody>
</table>

OA:

\[f(x) = \frac{x^2 + x - 2}{x + 1} \]

\[-1 \]

\[1 \quad 1 \quad -2 \]

\[-1 \quad 0 \quad -2R \]

\[1 \quad 0 \quad -2R \]

\[f(x) = x - \frac{2}{x + 1} \]

Therefore, the **OA** is \(y = x \).

** behaviour:**

<table>
<thead>
<tr>
<th></th>
<th>Far left</th>
<th>Far right</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(f(-100) = -99.98)</td>
<td>(f(100) = 99.98)</td>
</tr>
<tr>
<td>(y = x) asymptote</td>
<td>-100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(-99.98 > -100 \ (above))</td>
<td>(99.98 < 100 \ (below))</td>
</tr>
</tbody>
</table>
7. Graph the function
\[f(x) = \frac{(x + 3)(x + 1)}{(x + 1)(x + 4)(x - 2)} \]

- \(x - \text{int:} \quad -3 \)
- \(y - \text{int:} \quad -\frac{3}{8} \)

hole: at \(x = -1 \)

VA: \(x = -4, x = 2 \)

behaviour:

<table>
<thead>
<tr>
<th>Asymptote:</th>
<th>Left: (f(-4.1) = -1.8 \ (\text{down}))</th>
<th>Right: (f(-3.9) = 1.5 \ (\text{up}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = -4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x = 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HA: \(y = 0 \)

behaviour:

\(f(-100) = -0.0099 < 0 \ (\text{below}) \)
\(f(100) = 0.01 > 0 \ (\text{above}) \)
8. Mrs. Bethany bought some cupcakes for a bake sale for $18. When she wasn’t looking, Mr. Nathan ate one. She sold the rest at the bake sale for a total of $22, making a profit of $0.50 on each cupcake. How many cupcakes did Mrs. Bethany sell at the bake sale?

Let \(x \) be the number of cupcakes Mrs. Bethany sold at the bake sale, then \(x + 1 \) is the number of cupcakes originally purchased.

Unit buying price: \(\frac{18}{x + 1} \) ($/cupcake)

Unit selling price: \(\frac{22}{x} \) ($/cupcake)

Unit profit: \(\frac{1}{2} \) ($/cupcake)

\[
\begin{align*}
\frac{22}{x} - \frac{18}{x + 1} &= \frac{1}{2} \\
\frac{22(x + 1) - 18x}{x(x + 1)} &= \frac{1}{2} \\
\frac{22x + 22 - 18x}{x(x + 1)} &= \frac{2}{2} \\
\frac{4x + 22}{x(x + 1)} &= \frac{1}{2} \\
8x + 44 &= x(x + 1) \\
8x + 44 &= x^2 + x \\
0 &= x^2 - 7x - 44 \\
0 &= (x - 11)(x + 4) \\
x &= 11, -4 \text{ (inadmissible, can't have negative cupcakes)}
\end{align*}
\]

Therefore, Mrs. Bethany sold 11 cupcakes at the bake sale.
9. Mrs. Bethany can finish hanging a load of laundry 2 minutes faster than Mr. Nathan. Together, they can finish hanging a load of laundry in 7 minutes. How long does it take Mr. Nathan on his own?

let \(x \) *be the amount of time in minutes that Mr. Nathan takes on his own*

then \(x - 2 \) *is the amount of time in minutes that Mrs. Bethany takes on her own*

Mrs. Bethany's rate: \(\frac{1}{x - 2} \) loads per minute

Mr. Nathan's rate: \(\frac{1}{x} \) loads per minute

Combined rate: \(\frac{1}{7} \) loads per minute

\[
\frac{1}{x - 2} + \frac{1}{x} = \frac{1}{7}
\]

\[
\frac{x}{x(x - 2)} + \frac{x(x - 2)}{2x - 2} = \frac{1}{7}
\]

\[
\frac{x(x - 2)}{2x - 2} = \frac{1}{7}
\]

\[7(2x - 2) = x(x - 2)\]

\[14x - 14 = x^2 - 2x\]

\[0 = x^2 - 16x + 14\]

quad formula:

\[x = \frac{-(-16) \pm \sqrt{(-16)^2 - 4 \cdot 1 \cdot 14}}{2 \cdot 1}\]

\[x = \frac{16 \pm \sqrt{256 - 56}}{2}\]

\[x = \frac{16 \pm \sqrt{196}}{2}\]

\[x = \frac{16 \pm 14}{2}\]

\[x = 15.07, 0.93\]

0.93 is inadmissible since it would result in a negative time for Mrs. Bethany

Therefore, it takes Mr. Nathan approximately 15 minutes to hang a load of laundry on his own.

10. Describe what continuity is.

A function is continuous if it does not contain any holes or VAs (or any break) over its whole domain.

(can think of it as: you're able to draw the whole thing without lifting your pencil)
11. Solve the inequality:
\[
\frac{x^2 + 6x + 13}{x + 4} \leq \frac{20}{(x - 2)(x + 4)}
\]

\[
\frac{(x^2 + 6x + 13)(x - 2)}{(x + 4)(x - 2)} + \frac{20}{x^3 + 4x^2 + x - 26} \leq 0
\]

\[
\frac{20}{(x - 2)(x + 4)} + \frac{x^3 + 4x^2 + x - 6}{(x - 2)(x + 4)} \leq 0
\]

\[
factor \ n(x) = x^3 + 4x^2 + x - 6:
\]
\[
n(1) = 0, \text{ so } (x - 1) \text{ is a factor by the factor theorem}:
\]

\[
\begin{array}{cccccc}
1 & 4 & 1 & -6 \\
1 & 5 & 6 & 0R
\end{array}
\]

\[
n(x) = (x - 1)(x^2 + 5x + 6)
\]
\[
= (x - 1)(x + 2)(x + 3)
\]

continuing in the inequality:
\[
x^3 + 4x^2 + x - 6 \leq 0
\]
\[
\frac{(x - 2)(x + 4)}{(x - 1)(x + 2)(x + 3)} \leq 0; \ x \neq 2, -4
\]

find positive and negative intervals by graphing \(n(x) \) and \(d(x) = (x - 2)(x + 4) \)
(or by using a factor table)

\((-\infty, -4) \cup [-3, -2] \cup [1,2]\)

notice we use square brackets to show the inclusive inequality except on \(\infty \) and the restrictions.